ARTEM
_________________________________________________________________
I’m really glad that I am alumni of master program “Functional nanomaterials and modern technologies”. During my master education, I have met a lot of interesting scientists from different countries, and while communicating with them on lectures and practices gained valuable experience.
The choice of writing diploma in athe form of startup brought me very interesting experience, because I didn’t relate to startup activities before. The Ttopic of my diploma interested in the NOMC “North-Western Center for Mathematical Research named after Sofia Kovalevskaya” that was based on the REC “Smart Materials and Biomedical Applications” at our University, where I continue to work on the development of this topic with the support of the above-mentioned centers.
ANNA
_________________________________________________________________
It was a really hard two years of studying in FunNAT but it was definitely worth it. Moving to Kaliningrad, studying in English, writing two thesis takes a lot of your time and energy. Still, this is exactly the kind of situation when you are happy to be exhausted because the results are amazing.
During this program I:
· Meet true professors who care about their students and love their subjects
· Start working in bio lab with cancer cell cultures despite I have bachelor in materials science
· Try to study Polish language
· Find a perfect supervisor for PhD
· Receive master diploma in physics and master diploma in nanomaterials
MOHAMED
_________________________________________________________________
First, I want to take about my experience studying nanotechnology’s magnetic medical applications and its development:
My experience so far is one of pride that I have been able to be a part of BFU Immanuel Kant university’s physics department. The dedication and hard work that has been put into my two years of study has allowed me to succeed in many ways, as well as increasing my self-development skills. The university’s nanotechnologies department is a great place to study and I would suggest it to anyone!
Second, I want to talk about effort has been made by university staff to afford the best education and help to the students:
The university have amazing staff support when it comes to all things internally at university and externally within the environment. They are always prepared to go above and beyond when it comes to supporting students when they are confused, or when they are in the worst places. The support given at IKBFU is the best I’ve seen and heard about, no matter is too small nor too big for the university. Everyone is thought about and even if you are not asking for support, it is always there and will present itself when you need it most!
Topic of master thesis:
«Luminescent biopolymers based on extracts for photoactivation of singlet oxygen»
Publications during the study in Master Course and after:
1 – Tcibulnikova A.V.; Zemlyakova E.S.; Slezhkin Structure V.A.; Samusev I.G.; Bryukhanov V.V.; Khankaev A.A.; Artamonov D.A. Spectroscopy of triplet-excited complexes of oxygen with spruce cone molecules extract from picea abies in AOT micelles under combined photoexcitation
2 – Tcibulnikova A.; Zemliakova E.; Artamonov D.; Slezhkin V.; Skrypnik L.; Samusev I.; Zyubin A.; Khankaev A.; Bryukhanov V.; Lyatun I. Photonics of Viburnum opulus L. Extracts in Microemulsions with Oxygen and Gold Nanoparticles
3 – ARTAMONOV D.A., MYSLITSKAYA N.A., TSYBULNIKOVA A.V., SAMUSEV I.G., BRYUKHANOV V.V. OPTICAL RADIATION SPECTRA OF BISMUTH AND YTTERBIUM OXIDE UNDER INFRARED EXCITATION
4 – KHANKAEV A.A., ARTAMONOV D.A., TSYBULNIKOVA A.V., SHADDKIN V.A., SAMUSEV I.G., BRYUKHANOV V.V. PERMITTIVITY FUNCTIONS TITANIUM NANOSTRUCTURED DATA SURFACES
5 – ARTAMONOV DMITRY ALEXANDROVICH, TSYBULNIKOVA ANNA VLADIMIROVNA, SHLYADKIN VASILY ANATOLYEVICH, BRYUKHANOV VALERY VENIAMINOVICH, MEDVEDSKAYA POLINA NIKOLAEVNA, LYATUN IVAN IGOREVICH OPTICAL PROPERTIES OF TRIVALENT THULIUM IONS IN THE PRESENCE OF SILVER NANOPARTICLES IN TM2O3 MEDIUM
6 – TSYBULNIKOVA ANNA VLADIMIROVNA, ARTAMONOV DMITRY ALEXANDROVICH, SHLEZHKIN VASILY ANATOLYEVICH, BRYUKHANOV VALERY VENIAMINOVICH BROADENING OF EXTINCTION AND IMAGINARY SPECTRA DIELECTRIC CONSTANT IN A CLUSTER OF GOLD NANOPARTICLES
7 – DEMESHKEVICH E.A., ZYUBIN A.YU., KHANKAEV A.A., ARTAMONOV D.A., SAMUSEV I.G. FORMATION OF MONODISPERSE PLATINUM NANOPARTICLES BY FEMTOSECOND LASER ABLATION
Named scholarships:
Finalist of the competition for the program “UMNIC” – 2019 in the Kaliningrad region
Topic of master thesis:
Thesis: «Solitons in condensed matter physics and black holes»
Thesis Advisor: Artyom V. Astashenok, Ph.D.
Publications during the study in Master Course and after:
1 – A.V. Astashenok, A.S. Tepliakov. Some models of holographic dark energy on the Randall-Sundrum brane and observational data, International Journal of Modern Physics D Vol. 29, No. 01, 1950176 (2020). DOI:10.1142/S0218271819501761
2 – A.V. Astashenok, S.D. Odintsov, A.S. Tepliakov. The unified history of the viscous accelerating universe and phase transitions, Nucl.Phys.B 974 (2022) 115646 DOI: 10.1016/j.nuclphysb.2021.115646
3 – A.V. Astashenok, A.S. Teplyakov. On possible manifestations of the quantum effect of Hawking radiation in nonlinear optics, Bulletin of the Baltic Federal University named after I. Kant. Ser.: Physical, Mathematical and Technical Sciences. 2021 No. 2 pp. 103-114.
4 – A. S. Baigashev, M. A. Nikitin, A. S. Teplyakov. Nuclear protection against kilometer-long asteroids. Space Research, 2022, Volume 60, No. 4, pp. 1-6 DOI: 10.31857/S0023420622040021
5 – M.A. Nikitin, A.S. Teplyakov. Space elevator. Popular Science Physics and Mathematics journal “Kvant”, 2022, No. 1, pp. 13-17. DOI:10.4213/kvant20220101
6 – Astashenok, A.V.; Tepliakov, A. Crossing of Phantom Divide Line in Model of Interacting Tsallis Holographic Dark Energy. Universe 2022, 8, 265 DOI:10.3390/universe8050265
7 – A. S. Baigashov, M. A. Nikitin, and A. S. Tepliakov. Nuclear Defense Against Kilometer-Long Asteroids. Cosmic Research, 2022, Vol. 60, No. 4, pp. 292–296. DOI: 10.1134/S0010952522040025
Participation in grants:
1. Manager for physical and mathematical training of students and organization of the network segment of the project «Stimulating the scientific and technological creativity of young people and involving gifted schoolchildren in the future
professional activity “The Way to the Stars”». №19-2-006087. Project realization term: 01.11.2019 – 31.10.2020.
2. Manager for work with tutors of the project «Engaging students in future professional activities “New Horizons”».
№ 21-1-008956. Project realization term: 01.02.2021 – 31.01.2022
Topic of master thesis:
«Three-dimensional magnetic field mapping with magnetoplasmonic crystal-based sensor»
Publications during the study in Master Course and after:
1 – Murzin, D., Mapps, D. J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L., & Rodionova, V. (2020). Ultrasensitive magnetic field sensors for biomedical applications. Sensors, 20(6), 1569
2 – Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., & Rodionova, V. V. (2020). Tuning the magnetic properties of
permalloy-based magnetoplasmonic crystals for sensor applications. Japanese Journal of Applied Physics, 59(SE), SEEA04.
3 – Belyaev, V. K., Murzin, D. V., Kozlov, A. G., Grunin, A. A., Samardak, A. S., Ognev, A. V., … & Rodionova, V. V. (2020).
Engineering of optical, magneto-optical and magnetic properties of nickel-based one-dimensional magnetoplasmonic crystals. Japanese Journal of Applied Physics, 59(SE), SEEA08.
4 – Omelyanchik, A., Antipova, V., Gritsenko, C., Kolesnikova, V., Murzin, D., Han, Y., … & Rodionova, V. (2021). Boosting
magnetoelectric effect in polymer-based nanocomposites. Nanomaterials, 11(5), 1154
5 – Belyaev, V. K., Murzin, D., Martínez-García, J. C., Rivas, M., Andreev, N. V., Kozlov, A. G., … & Rodionova, V. (2021). FORC-diagram analysis for a step-like magnetization reversal in nanopatterned stripe array. Materials, 14(24), 7523
6 – Motorzhina, A., Jovanović, S., Belyaev, V. K., Murzin, D., Pshenichnikov, S., Kolesnikova, V. G., … & Levada, K. (2021).
Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. Processes, 9(12), 2264
Participation in grants:
1. Main executor in Russian Science Foundation grant No. 21-72-3002 “Development and research of multimaterials with
magnetic nanocomponents for additive 3d-5d technologies”, project started in 2021.
2. Executor government task No. 3.4168.2017 “Capture, retention and injection of a domain wall in wires with cylindrical
symmetry with diameters from submicrons to microns and control of the dynamics of the motion of the domain wall in them”, 2017-2019.
3. Executor in Russian Science Foundation grant No. 22-22-00997 “Development of a magnetic field sensor element based
on a two-dimensional magnetoplasmonic crystal for point-of-care devices”, project started in 2022.
4. Executor in Ministry of Science and Higher Education of the Russian Federation grant “Development of a sensor for
detecting constant and variable magnetic fields based on a magnetoplasmonic crystal”.
Named scholarships:
1 – Advanced scholarship of the Immanuel Kant Baltic Federal University
2 – Personal scholarship of the Governor of the Kaliningrad region
Internships:
1. Internship to the department of magnetism of the Lomonosov Moscow State University
2. Internship to the Institute of Chemistry and Ecology of the Vyatka State University
Topic of master thesis:
«Study of temperature-dependent magnetization reversal in exchange bias structures based on permalloy»
Publications during the study in Master Course and after:
1 – Temperature-dependent magnetization reversal in exchange bias nife/irmn/nife structures / Gritsenko Ch., Dzhun
I., Volochaev M., Gorshenkov M., Babaytsev G., Chechenin N., Sokolov A., Tretiakov Oleg A., Rodionova V.// Journal of Magnetism and Magnetic Materials – 2019– V. 482 – p. 370-375, (https://doi.org/10.1016/j.jmmm.2019.03.044).
2 – Inhomogeneous magnetic field influence on magnetic properties of NiFe/IrMn thin film structures / Gritsenko Ch.,
Omelyanchik A., Berg A., Dzhun I., Chechenin N., Tretiakov O., Rodionova V.// Journal of Magnetism and Magnetic Materials – 2019 – V. 475 – p. 763-766. (https://doi.org/10.1016/j.jmmm.2018.10.013).
3 – FMR investigations of exchange biased NiFe/IrMn/NiFe trilayers with high and low Ni relative content / Dzhun I.O.,
Babaytsev G. V., Chechenin N.G., Gritsenko C.A., Rodionova V. V. // Journal of Magnetism and Magnetic Materials – 2019 – V. 470 – p. 151-155. (https://doi.org/10.1016/j.jmmm.2017.11.028).
4 – Amirov, A. A., Yusupov, D. M., Murliev, E. K., Gritsenko, C. A., Aliev, A. M., & Tishin, A. M. (2021). Smart thermoresponsive composite activated by magnetocaloric effect. Materials Letters, 304, 130626 (https://doi.org/10.1016/j.matlet.2021.130626).
5 – Gritsenko C. et al. Complex Study of Magnetization Reversal Mechanisms of FeNi/FeMn Bilayers Depending on
Growth Conditions //Nanomaterials. – 2022 – Т. 12 – №. 7 – С. 1178, (https://doi.org/10.3390/nano12071178 ).
6 – Omelyanchik, A., Antipova, V., Gritsenko, C., Kolesnikova, V., Murzin, D., Han, Y., … & Rodionova, V. (2021).
Boosting magnetoelectric effect in polymer-based nanocomposites. Nanomaterials, 11(5), 1154,(https://doi.org/10.3390/nano11051154).
Participation in grants:
1. Russian Science Foundation, 21-72-30032 Development and research of multi-materials with magnetic nanocomponents for additive 3d-5d technologies”, 2021 – 2024, participation;
2. Russian Science Foundation, 21-72-20158 “Development of mesoscale hybrid magnetic particles for biomedical applications,” participation;
3 Russian Foundation for Basic Research, 17-32- 50170, “Investigation of the influence of nickel content in exchange-coupled NiFe films on their micromagnetic structure and structural properties of thin-film systems based on them”, 03-06.2018 г., participation;
4. The Government assignment № 3.4168.2017/ПЧ “Trapping, pinning and injecting of domain wall in wire with cylindrical symmetry with diameters from submicron to few microns and control of domain wall propagation dynamics”, 2017-2019 гг., participation;
5. Russian Science Foundation, 18-79-10176, “Development and creation of technological bases for the design of magnetoelectric smart composites for controlled release of drugs”, 2018-2019 гг., participation;
6. Russian Science Foundation, 17-12-01569, “Physics fundamentals for the creation of electromagnetic actuators based on microwires”, 2017-2019, participation;
7. Grant from the Ministry of Science and Higher Education of the Russian Federation No. 13.2251.21.0143 “Development of a sensor for detecting constant and variable magnetic fields based on a magnetoplasmonic crystal”, 2022-2025, participation.
Named scholarships:
One year (2021) Postdoc position at the Faculty of Science of Univerzita Pavla Jozefa Šafárika v Košiciach (Kosice, Slovakia) for study of 1D and 2D diffraction gratings with metal dielectric interfaces.
Internships:
1 – NOVEMBER-DECEMBER 2019 – INSTITUTE OF CHEMISTRY OF ORGANOMETALLIC COMPOUNDS OF CNR (FLORENCE, ITALY) – Synthesis and investigation of thin ferromagnetic films NiXFe100-X using magnetron sputtering method.Fabrication of diffraction gratings using electron beam lithography.
2 – JULY 2019 – GDAŃSK UNIVERSITY OF TECHNOLOGY (GDANSK, POLAND)- Erasmus+ program, Investigation of
structural properties exchange biased NiFe/FeMn thin film structures.
Topic of master thesis:
Thesis: «Magnetic cobalt-ferrite nanoparticles as a novel therapeutic agent for T-lymphoblastic leukemia»
Thesis Advisor: Dr. Kateryna Levada, Dr. Sonja Jovanovic, Prof. Anna Perelomova
Publications during the study in Master Course and after:
1 – A.V. Motorzhina et al., Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties // Processes. – 2021 – T. 9 – P. 2264 DOI: 10.3390/pr9122264
2 – A.V. Motorzhina et al., Study of Gold/Zinc-doped cobalt ferrite nanoparticles cytotoxic effect on T-lymphoblastic leukemia cells // Nanobiotechnology Reports. – 2022 – T.3 – DOI: 10.56304/S1992722322030128
Participation in grants:
1. April 2021 – May 2022 Research Engineer PSF 21-72-30032 Development and investigation of multimaterials with magnetic nanoinclusions for additive 3d-5d technologies
2. April 2021 – May 2022 Research Engineer PSF 21-72-20158 Development of mesoscale hybrid magnetic particles for biomedical applications
3. May 2022 – to date Research Engineer PSF 22-22-20124 Synthesis and investigation of nickel-zinc nanoparticles doped with silver, as promising multifunctional active agents for wastewater treatment
4. May 2022 – to date Research Engineer PSF 22-12-20036 Development of innovative devices for selective water and air purification based on two-dimensional materials – MXenes
Named scholarships:
Advanced scholarship of the Immanuel Kant Baltic Federal University
Internships:
December 3 –9, 2019 Magnetism Department of M.V.Lomonosov Moscow State University (Moscow, Russia) under the supervision of Prof. N. Perov
Topic of master thesis:«Mathematical modeling of the magnetoelectric effect in a multiferroic composite»
Participation in grants:
1. Russian Science Foundation, 21-72-30032 “Development and research of multi-materials with magnetic nanocomponents
for additive 3d-5d technologies”, 2021 – 2024, participation;
2. Russian Science Foundation, 21-72-20157, participation;
Named scholarships:
Enhanced State Academic scholarship
Publications during the study in Master Course and after:
1 – Mark Smirnov, Ivan Mershiev, Galina Kupriyanova. 1H high-resolution NMR spectrometry and relaxometry for soybean oil research. Magnetic Resonance and its Applications. Spinus-2021. Proceedings. Saint Petersburg State University, 2021 282
pp. ISSN 2542–2049;
2 – Mark Smirnov, Ivan Mershiev, Alexsander Musalenko, Galina Kupriyanova. 1H NMR study of soybean oils. Magnetic Resonance and its Applications. Spinus-2020. Proceedings. Saint Petersburg State University, 2020 308 pp. ISSN 2542-2049;
3 – Mark Smirnov, Ivan Mershiev, Galina Kupriyanova. 1H High-resolution NMR relaxometry for olive oil research. Magnetic Resonance and its Applications. Spinus-2022. Proceedings. Saint Petersburg State University, 2022 271 pp. ISSN 2542 – 2049;
4 – Kupriyanova G.S., Sinyavsky N.Ya.,, Mershiev I.G., Musalenko А.А., Smirnov M.L.. Application of relaxation 1H NMR for oil study. Marine intelligent technology. Electronic network (ISSN 2588-0233) and print (ISSN No. 2073-7173) publications. VI International Baltic Marine Forum. Kaliningrad Т. 1 2019
5 – Smirnov M.L., Zyubin A.Yu., Demishkevich E.A., Kupriyanova G.S. 1H NMR Rhodamine in asin silver solution.
XIX INTERNATIONAL SCIENTIFIC CONFERENCE “INNOVATION IN SCIENCE, EDUCATION AND ENTREPRENEURSHIP – 2021”, SECTION “PHYSICS OF CONDENSED STATE”. Proceedings. Kaliningrad State Technical University, 2022 667 pp. ISBN 978-5-7481-0485-2.
6 – M. Smirnov, I. Mershiev, G. Kupriyanova. 13С NMR High Resolution Spectrometry and Relaxometry for Soybean Oil Research. MODERN DEVELOPMENT OF MAGNETIC RESONANCE – 2021 Proceedings. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences. 2021 288 pp.
7 – G.S. Kupriyanova, G. V. Mozzhukhin, I. G. Mershiev, M. L. Smirnov, B. Z. Rameev. 1 H, 13C NMR for Testing of Edible Oils. MODERN DEVELOPMENT OF MAGNETIC RESONANCE – 2021 Proceedings. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences. 2021 288 pp.
Named scholarships:
Laureate of the competition of the best poster presentation. 18 International Youth school conference «Spinus. Magnetic resonance and its application».
Александр Владимирович Садовников
к.ф.-м.н., доцент кафедры физики открытых систем Саратовского государственного университета им. Н.Г. Чернышевского 2009 год окончил Саратовский государственный университет (СГУ); |
Dr. Grzegorz Kwiatkowski
Postdoc
Science Institute
University of Iceland
Dr. Grzegorz Kwiatkowski obtained his PhD from the Faculty of Applied Physics and Mathematics at the Gdańsk University of Technology, Poland and joined the physics department of the Gdańsk University of Technology, Poland in 2014. He joined then Immanuel Kant Baltic Federal University, Russia in 2016 as Leading Researcher. In 2018 he begun a postdoctoral fellowship at the Science Institute of the University of Iceland in Reykjavík, Iceland where he works up to now.
Кон Игорь Игоревич Младший научный сотрудник НОЦ «Фундаментальная и прикладная фотоника. Нанофотоника» Защитился в ИФМиТ БФУ им. Канта по магистерской программе физика конденсированного состояния. На данный момент обучается на 2 курсе аспирантуры по направлению физика и астрономия. Область научных интересов: математическое моделирование, наноплазмоника, квантовая химия. |
Dr. Shanawer Niaz
Assistant Professor/ Coordinator Department of Physics
University of Sargodha, Sub-campus Bhakkar, Pakistan
Dr. Shanawer Niaz obtained his PhD from the Molecular Engineering Laboratory (MOLENG) at the University of Patras, Greece and joined the physics department of the University of Sargodha, Pakistan in 2014. Prior to the PhD, he was Lecturer at the same university from 2007 till the beginning of 2010. He moved then Bilkent University, Turkey for postdoctoral fellowship where he finished a research project funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) in 2016. He then joined IKBFU, Russia in 2017 as Leading Researcher. Dr. Shanawer does research in Nanotechnology, Theoretical Chemistry and Quantum Physics.
Верещагин Михаил Дмитриевич
доцент БФУ им. Канта, PhD, преподаватель теоретической механики и механики сплошных сред
Закончил физический факультет БФУ им. Канта, защитился в университете Зелена Гура по специальности физика / астрономия,
является членом комиссии Калининградской области по ЕГЭ и олимпиадам по физике.
Является преподавателем таких предметов как Теоретическая механика и механика сплошных сред, Термодинамика и статистическая физика, также множества курсов по программированию на различных языках.
Область научных интересов: магнитные явления (микропровода), математическая физика, теоретическая механика, численные методы, программирование
Юрий Дмитриевич Фомин,
ведущий научный сотрудник, Институт физики высоких давлений им. Л.Ф. Верещагина РАН
2007 закончил МФТИ, кафедра конденсированного состояния вещества в экстремальных условиях;
2009 защитил кандидатскую диссертацию на тему «Фазовая диаграмма коллапсирующих сфер»;
2011 PostDoc в Университете Клермон-Феррона, Франция; 2012 PostDoc в Университете Любляны, Словения, моделирование ионных жидкостей методами молекулярной динамики;
2016 защитил докторскую диссертацию на тему «Компьютерное моделирование аномального поведения жидкостей».
Область научных интересов: компьютерное моделирование жидкостей, газов и кристаллов, исследование фазовых переходов, свойств сверхкритических жидкостей, низкоразмерных систем.
At the beginning of July, 6 members of REC «Smart Materials and Biomedical Applications» took part in the XXIV International Conference «New in Magnetism and Magnetic Materials» (https://lomonosov-msu.ru/rus/event/6546/ ). The conference was held online from 1th to 8th of July.
Master student Valeria Kolesnikova gave an oral talk «Micromagnetic structure and magnetic properties of ferromagnetic microwires». Master student Valery Savin presented results of his research «Investigation of accelerated motion of domain wall in a bistable ferromagnetic microwire 1st». Prof. S. B. Leble gave also an oral talk «Influence of microwire inhomogeneities on a head-to-head domain wall dynamics 2nd». PhD student Kirill Sobolev presented his work «Investigation of magnetic properties of MAX-phases in (Cr1-xMnx)2AlC system before and after sample purification via the chemical etching». PhD student Alyona Litvinova gave an oral talk on her research “Investigation of magnetostriction properties of amorphous ferromagnetic microwires in a glass shell”. In the section «Biomagnetism», bachelor student Zoya Grigorieva spoke about a new technique for diagnosing Crohn’s disease using ferromagnetic nanoparticles.
Date and place of birth; Nationality: 27.May.1980 in Sverdlovsk; Russian
ORCID-ID: 0000-0001-5700-7009, full list of publications on webpage:
Webpage: https://dsm.univie.ac.at e-mail: sofia.kantorovich@univie.ac.a
.) Assoc. Professor at the Faculty of Physics, University of Vienna
.) Deputy Head of the research platform MMM Mathematics-Magnetism-Materials, University of Vienna
.) Assoc. Professor at Ural Federal University, www.urfu.ru
b) HIGHER EDUCATION:
1997 – 2001 Studies of Mathematics and Applied Mathematics at the Ural Federal University
Bachelor thesis Density functional theory for bidisperse ferrofluid. Diploma with distinction.
2001 – 2003 Studies of Mathematics and Applied Mathematics at the Ural Federal University
Master thesis Microstructural properties of ferrofluid. Diploma with distinction.
2003 – 2004 Ph.D.-student in Physics of Magnetism at Ural State University/Moscow State University
Ph.D. thesis Chain aggregates in polydisperse magnetic fluids.
May. 2011 Habilitation to Privatdozent in Physics, Ural Federal University
July. 2015 Habilitation in Physics, University of Vienna
Thesis Bridging Scales in Dipolar Soft Matter
May. 2019 Habilitation to Professor in Physics, Ural Federal University
Languages : Russian (native), English (fluent), German (fluent), Italian (fluent), French (intermediate)
c) APPOINTMENTS/POSITIONS:
2000 – 2009 Postdoctoral fellow, Max Planck Institute for Polymer Research, Mainz, Germany;
Researcher, lecture, senior researcher, associate professor, Ural State University, Ekaterinburg, Russia;
2009 – 2012 Humboldt Fellow at the Institute for Computational Physics, Stuttgart, Germany;
2012 – 2013 Senior researcher, University of Rome “La Sapienza”, Italy.
2013 – 2016 Senior researcher, START-Project Leader, University of Vienna, Austria.
2016 – 2017 Tenure track Associate professor, University of Vienna, Austria
2011 – present time Associate Professor
Institute of Natural Sciences and Mathematics, Department of Theoretical Physics, Ural Federal University, Russia.
2017 – present time Associate Professor
Faculty of Physics, Computational Physics, University of Vienna, Austria.
2019 – present time Vice-president of Wolfgang-Pauli-Institute/University of Vienna, Austria.
d) RESEARCH FIELDS: Magnetic Soft Matter (magnetic fluids, magnetic gels, capped magnetic colloids, anisotropic magnetic particles, Janus particles), Charged Colloids (ionic liquids, polyelectrolytes), Self-Assembly in Nanostructured Soft Matter Systems, Active Matter; Coarse-grained Molecular Dynamics and Monte Carlo simulations + Classical Density functional Theory + Mean field theories for (dynamic) magnetic response.
PhD, Doctor of Science (Habil.), Full Professor, Faculty of Physics,
Lomonosov Moscow State University, Moscow, Russia
Prof. Andrey Fedyanin received his MSc degree in Physics in 1996, PhD degree in Physics in 1997 and Doctor of Science degree (Habilitation) in 2009 from the Faculty of Physics, Lomonosov Moscow State University, Russia.
Prof. Fedyanin is Head of the Laboratory of Nanophotonics & Metamaterials and Chair of Nanophotonics Department at Faculty of Physics, Lomonosov Moscow State University.
His main research activities focus on nanophotonics, nano-optics and nonlinear optics of different types of nanostructures including metamaterials, in particular, on magnetoplasmonics in nanostructures, photonic crystals and metamaterials, nanoplasmonics in nanostructures and metamaterials, nanophotonics in optical tweezers, near-field optical studies of plasmonic nanostructures and metamaterials, and ultrafast dynamics of optical response of nanostructures, photonic crystals and metamaterials.
Professor Des Mapps is Professor Emeritus at the University of Plymouth, UK. As of April 2021, he has published 163 papers in International research journals, 13 patents, and 77 major reports for the industry. He has presented 128 papers in international research conferences across the world and 70 papers at other national events, mainly in the UK. He has supervised 27 PhDs. He specializes in magnetic sensors, magnetic computer memories, nanotechnology, and bio-magnetism. He has been External Examiner for MSc courses and PhDs in many UK Universities. He is a nominator for the Japan Prize.
Polina Khapaeva is the director for the development of SCAMT Institute (ITMO University, Saint Petersburg, Russia).
She has received a specialist degree in the economy at the Northern (Arctic) Federal University and a BSc degree in circumpolar studies at the University of the Arctic.
After more than 5 years in the HR sphere and Youth work, in 2017 she joined the SCAMT team for leading HR, PR, events, and international activities.
Since 2019 she is teaching Public speaking and presentation skills in the frame of the International Research Management Essentials course. She is also a trainer of the European pool of trainers AEGEE-Academy.
María del Puerto Morales is Professor at the Institute of Material Science in Madrid (ICMM/CSIC), Spain since 2018. She got her degree in Chemistry by the University of Salamanca and her PhD in Material Science from the Madrid Autonomous University in 1993. From 1994 to 1996, she worked as a postdoctoral fellow at the School of Electronic Engineering and Computer Systems in the University of Wales (UK).
She has authored several book chapters (12), patents (5) and more than 260 articles (h=60, >14.500 citations) and has been the principal investigator from the CSIC in two European-funded research projects in the 7FP (Multifun and NanoMag) and now, she is CSIC IP in MSCA-RISE-2020, NESTOR (2021-2024) and is participating in the FET-OPEN, HOTZYMES 2019-2021.
Her research activities are focused on the area of nanotechnology, in particular in the synthesis and characterization of magnetic nanoparticles, including the mechanism of particle formation, surface modification and its performance in biomedical applications such as biomolecule separation, NMR imaging, drug delivery and hyperthermia, and also in catalysis and environmental remediation.
Francesco Pineider received his PhD in Chemistry from the University of Florence in 2009 with a thesis on the properties of single molecule magnet monolayers over gold surfaces under the supervision of Prof. Roberta Sessoli. He spent his post-doc years between the University of Florence and the University of Padua/CNR working in the emerging field of magnetoplasmonics, the interaction between magnetic materials with plasmonic nanostructures.
Francesco has been awarded with several early career awards, among which the European Award for Doctoral Thesis on Molecular Magnetism (2010) from the European Institute of Molecular Magnetism for his PhD thesis work and the NEST award for Nanoscience (2014) from Scuola Normale Superiore di Pisa for his work on magnetoplasmonics.
He is currently asociate professor at the Department of Chemistry and Industrial Chemistry at the University of Pisa.